Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 18(4): e0284211, 2023.
Article in English | MEDLINE | ID: covidwho-2293379

ABSTRACT

Monitoring the spread of viral pathogens in the population during epidemics is crucial for mounting an effective public health response. Understanding the viral lineages that constitute the infections in a population can uncover the origins and transmission patterns of outbreaks and detect the emergence of novel variants that may impact the course of an epidemic. Population-level surveillance of viruses through genomic sequencing of wastewater captures unbiased lineage data, including cryptic asymptomatic and undiagnosed infections, and has been shown to detect infection outbreaks and novel variant emergence before detection in clinical samples. Here, we present an optimised protocol for quantification and sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in influent wastewater, used for high-throughput genomic surveillance in England during the COVID-19 pandemic. This protocol utilises reverse compliment PCR for library preparation, enabling tiled amplification across the whole viral genome and sequencing adapter addition in a single step to enhance efficiency. Sequencing of synthetic SARS-CoV-2 RNA provided evidence validating the efficacy of this protocol, while data from high-throughput sequencing of wastewater samples demonstrated the sensitivity of this method. We also provided guidance on the quality control steps required during library preparation and data analysis. Overall, this represents an effective method for high-throughput sequencing of SARS-CoV-2 in wastewater which can be applied to other viruses and pathogens of humans and animals.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Wastewater , Pandemics , RNA, Viral/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Polymerase Chain Reaction , Complement System Proteins , COVID-19 Testing
2.
Microb Genom ; 9(4)2023 04.
Article in English | MEDLINE | ID: covidwho-2291995

ABSTRACT

Wastewater-based epidemiology has been used extensively throughout the COVID-19 (coronavirus disease 19) pandemic to detect and monitor the spread and prevalence of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and its variants. It has proven an excellent, complementary tool to clinical sequencing, supporting the insights gained and helping to make informed public-health decisions. Consequently, many groups globally have developed bioinformatics pipelines to analyse sequencing data from wastewater. Accurate calling of mutations is critical in this process and in the assignment of circulating variants; yet, to date, the performance of variant-calling algorithms in wastewater samples has not been investigated. To address this, we compared the performance of six variant callers (VarScan, iVar, GATK, FreeBayes, LoFreq and BCFtools), used widely in bioinformatics pipelines, on 19 synthetic samples with known ratios of three different SARS-CoV-2 variants of concern (VOCs) (Alpha, Beta and Delta), as well as 13 wastewater samples collected in London between the 15th and 18th December 2021. We used the fundamental parameters of recall (sensitivity) and precision (specificity) to confirm the presence of mutational profiles defining specific variants across the six variant callers. Our results show that BCFtools, FreeBayes and VarScan found the expected variants with higher precision and recall than GATK or iVar, although the latter identified more expected defining mutations than other callers. LoFreq gave the least reliable results due to the high number of false-positive mutations detected, resulting in lower precision. Similar results were obtained for both the synthetic and wastewater samples.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Wastewater-Based Epidemiological Monitoring , Wastewater , Algorithms
3.
Environ Int ; 172: 107765, 2023 02.
Article in English | MEDLINE | ID: covidwho-2242639

ABSTRACT

The potential utility of wastewater-based epidemiology as an early warning tool has been explored widely across the globe during the current COVID-19 pandemic. Methods to detect the presence of SARS-CoV-2 RNA in wastewater were developed early in the pandemic, and extensive work has been conducted to evaluate the relationship between viral concentration and COVID-19 case numbers at the catchment areas of sewage treatment works (STWs) over time. However, no attempt has been made to develop a model that predicts wastewater concentration at fine spatio-temporal resolutions covering an entire country, a necessary step towards using wastewater monitoring for the early detection of local outbreaks. We consider weekly averages of flow-normalised viral concentration, reported as the number of SARS-CoV-2N1 gene copies per litre (gc/L) of wastewater available at 303 STWs over the period between 1 June 2021 and 30 March 2022. We specify a spatially continuous statistical model that quantifies the relationship between weekly viral concentration and a collection of covariates covering socio-demographics, land cover and virus associated genomic characteristics at STW catchment areas while accounting for spatial and temporal correlation. We evaluate the model's predictive performance at the catchment level through 10-fold cross-validation. We predict the weekly viral concentration at the population-weighted centroid of the 32,844 lower super output areas (LSOAs) in England, then aggregate these LSOA predictions to the Lower Tier Local Authority level (LTLA), a geography that is more relevant to public health policy-making. We also use the model outputs to quantify the probability of local changes of direction (increases or decreases) in viral concentration over short periods (e.g. two consecutive weeks). The proposed statistical framework can predict SARS-CoV-2 viral concentration in wastewater at high spatio-temporal resolution across England. Additionally, the probabilistic quantification of local changes can be used as an early warning tool for public health surveillance.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , RNA, Viral , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL